MCP & A2A - Model Context Protocol & Agent to Agent Protocol | Kartik Marwah | Skillshare

Velocidade de reprodução


1.0x


  • 0.5x
  • 0.75x
  • 1x (Normal)
  • 1.25x
  • 1.5x
  • 1.75x
  • 2x

MCP & A2A - Model Context Protocol & Agent to Agent Protocol

teacher avatar Kartik Marwah, Teaching AI, Agents, MCP, A2A

Assista a este curso e milhares de outros

Tenha acesso ilimitado a todos os cursos
Oferecidos por líderes do setor e profissionais do mercado
Os temas incluem ilustração, design, fotografia e muito mais

Assista a este curso e milhares de outros

Tenha acesso ilimitado a todos os cursos
Oferecidos por líderes do setor e profissionais do mercado
Os temas incluem ilustração, design, fotografia e muito mais

Aulas neste curso

    • 1.

      Course Introduction

      1:48

    • 2.

      1.1 MCP Overview - What is Model Context Protocol?

      4:36

    • 3.

      1.2. Get Code on Github

      1:56

    • 4.

      SECTION 2 START - Build Your Own MCP Server - 2.1 Introduction to MCP Server and 1 Minute Preview of

      1:17

    • 5.

      2.2 Install Claude for Desktop

      1:11

    • 6.

      2.3 Install Python, UV and VS Code

      2:52

    • 7.

      2.4 Setup Project Directories and Files

      1:48

    • 8.

      2.5 MCP Server Python Code Walkthrough

      1:35

    • 9.

      2.6 Connect Server to Claude Desktop and Test Your Server

      12:59

    • 10.

      SECTION 3 START - Build Your Own MCP Client (Using Python + Google Gemini API) - 3.1 Quick Recap and

      2:24

    • 11.

      3.2 How to Get Free Gemini API Key

      1:51

    • 12.

      3.3 Setup Project Directories, Files & Install Google-GenAI SDK

      2:14

    • 13.

      3.4 MCP Client Python Code Walkthrough

      10:33

    • 14.

      3.5 Test Your MCP Client with Your MCP Server

      2:26

    • 15.

      SECTION 4 - Containerize your MCP Server Using Docker

      14:41

    • 16.

      SECTION 5 - Simplify client code with LangGraph & LangChain

      11:28

    • 17.

      SECTION 6 START Build MCP Client with Multiple Server Support: 6.1 Introduction

      0:36

    • 18.

      6.2 Let's look at the config.json file

      0:36

    • 19.

      6.3 Demo - MCP Client with Multiple MCP Servers

      4:10

    • 20.

      6.4 MCP Client (with json config) Code Walk Through - Part 1

      2:23

    • 21.

      6.5 Why Choose Gemini 2.0 Flash and not the Pro Models

      0:47

    • 22.

      6.6 MCP Client (with json config) Code Walk Through - Part 2 (continued)

      3:52

    • 23.

      6.7 How to use existing MCP servers from MCP Github (example uses "fetch" server)

      3:57

    • 24.

      SECTION 7 START - Server Sent Events - MCP Server and Clients using SSE - 7.1 Introduction

      0:58

    • 25.

      7.2 Quick Recap, What is STDIO and SSE?

      2:12

    • 26.

      7.3 Setup Directories, Clone GitHub Code (git pull only, if done at course start)

      1:35

    • 27.

      7.4 Setup Virtual Environment and Dependencies

      2:27

    • 28.

      7.5 MCP SSE Server Code Walkthrough

      8:57

    • 29.

      7.6 MCP SSE Client Code Walkthrough

      14:10

    • 30.

      7.6 Dockerfile Code (for MCP Server) Walkthrough

      0:55

    • 31.

      7.7 Test your MCP SSE Server and Client Locally

      2:36

    • 32.

      SECTION 8 START - Deploying MCP Server to Google Cloud Platform - 8.1 Create a new Gmail Account (if

      2:34

    • 33.

      8.2 Create a Google Cloud Project

      2:48

    • 34.

      8.3 Install and Setup Google Cloud Command Line Interface (gcloud CLI)

      5:33

    • 35.

      8.4 Build Docker Image for Google Cloud

      1:02

    • 36.

      8.5 Deploy MCP SSE Server to Google Cloud Run

      0:58

    • 37.

      8.6 Test MCP SSE Server on Google Cloud

      2:04

    • 38.

      SECTION 9 START - STREAMABLE HTTP MCP SERVER - 9.1 Quick MCP Recap and What is Streamable HTTP

      3:52

    • 39.

      9.2 Overview of Streamable HTTP using Sequence Diagram

      2:54

    • 40.

      9.3 Initialisation Phase

      2:12

    • 41.

      9.4 Client Requests Phase of Streamable HTTP

      1:46

    • 42.

      9.5 MCP Client Notifications and Responses

      0:45

    • 43.

      9.6 Client Listening to Messages from the Server in Streamable HTTP

      1:19

    • 44.

      9.7 Session handling in Streamable HTTP

      1:57

    • 45.

      9.8 External Resource for keeping up to date

      1:57

    • 46.

      SECTION 9.2 START Streamable HTTP MCP Server - Step-by-step demo

      12:02

    • 47.

      SECTION 9.3 START Streamable HTTP MCP Client using Gemini and Google ADK - Introduction

      6:17

    • 48.

      9.3.2 Code overview

      2:49

    • 49.

      9.3.3 MCP Client User Interface - cmd.py

      4:30

    • 50.

      9.3.4 MCP Client Implementation - client.py

      5:11

    • 51.

      9.3.5 MCP Agent Implementation - agent.py

      8:33

    • 52.

      9.3.6 Code - MCP config json file

      2:04

    • 53.

      9.3.7 Code for Utilities & STDIO Server + Environment Setup

      8:17

    • 54.

      SECTION 10 START - Streamlit User Interface for MCP Client - 10.1 Streamlit UI MCP Client Overview

      2:35

    • 55.

      10.2 Streamlit UI Demo

      2:39

    • 56.

      10.3 Comparing our UI with Claude Desktop!

      0:26

    • 57.

      10.4 Setup Directories (skip if done earlier)

      0:54

    • 58.

      10.5 Setup Google Gemini API Key (verify again if done earlier)

      1:37

    • 59.

      10.6 Create Virtual Environment and Install Dependencies

      1:39

    • 60.

      10.7 Get Streamlit UI Code

      1:00

    • 61.

      10.8 Streamlit App Imports and State Initialisation

      3:35

    • 62.

      10.9 Code for Utility Functions

      1:15

    • 63.

      10.10 Streamlit App Sidebar Code

      3:21

    • 64.

      10.11 Building the Main Chat UI for the App

      3:04

    • 65.

      10.12 Core Logic For Query Handling

      1:35

    • 66.

      10.13 Trigger Logic for Send and Other Chat Buttons

      1:41

    • 67.

      10.14 Streamlit App MCP Client Code

      7:04

    • 68.

      10.15 theailanguage_config.json and other files

      1:35

    • 69.

      10.16 Running the Streamlit UI

      0:18

    • 70.

      SECTION 11 START - A2A or Agent to Agent Protocol - Lifecycle - 11.1 Introduction

      2:56

    • 71.

      11.2 Why A2A Protocol - A2A vs MCP

      2:09

    • 72.

      11.3 Discovery - A2A Client, A2A Server, Agent Card

      2:43

    • 73.

      11.4 Initiation - Tasks, Messages, Parts

      1:53

    • 74.

      11.5 Processing - Artifacts, Streaming, Push Notifications, Non-streaming

      1:42

    • 75.

      11.6 Interaction - input-required state

      0:22

    • 76.

      11.7 Completion Flow & Summary of A2A

      1:35

    • 77.

      SECTION 12 START - Building your own A2A Client and A2A Server

      18:40

    • 78.

      SECTION 13 START - Build your own A2A Agent with Google Agent Development Kit (ADK) - Introduction

      3:56

    • 79.

      13.2 Quick Demo of the A2A Agent

      1:43

    • 80.

      13.3 Code and Gemini API Key Setup

      2:57

    • 81.

      13.4 Run your A2A Agent Server and Client

      1:53

    • 82.

      13.5 Agent Code Walkthrough

      4:41

    • 83.

      13.6 Agent Taskmanager Code Walkthrough

      3:36

    • 84.

      13.7 Agent main.py code walkthrough

      2:37

    • 85.

      13.8 Client code walkthrough - part 1

      1:32

    • 86.

      13.9 Client code walkthrough - part 2 - Manual Agent Discovery

      0:50

    • 87.

      13.10 Client code walkthrough - part 3

      2:06

    • 88.

      13.11 App code walkthrough

      3:25

    • 89.

      13.12 Quick Recap of Code Architecture

      0:48

    • 90.

      13.13 Models code walkthrough

      2:35

    • 91.

      SECTION 14 START - A2A with Multiple Agents

      8:28

    • 92.

      SECTION 15 START - Connect 3 Agents with A2A

      4:28

    • 93.

      15.2 A2A Architecture Recap

      1:40

    • 94.

      15.3 Agent Discovery and Registry

      4:19

    • 95.

      15.4 Orchestrator Host Agent

      12:36

    • 96.

      15.5 Orchestrator Taskmanager

      1:38

    • 97.

      15.6 Orchestrator entry python script

      3:10

    • 98.

      15.7 Greeting agent

      8:00

    • 99.

      15.8 Summary and other files, folders

      1:03

    • 100.

      15.9 Setup the code & API Key

      3:42

    • 101.

      15.10 Running the agents and client

      2:39

  • --
  • Nível iniciante
  • Nível intermediário
  • Nível avançado
  • Todos os níveis

Gerado pela comunidade

O nível é determinado pela opinião da maioria dos estudantes que avaliaram este curso. Mostramos a recomendação do professor até que sejam coletadas as respostas de pelo menos 5 estudantes.

7

Estudantes

--

Sobre este curso

Class Overview: In this hands-on coding course, you'll learn about Model Context Protocol (MCP) and Agent-to-Agent (A2A) Protocol-the foundational technologies that enable AI agents to communicate, collaborate, and access external tools. You'll build 5 MCP Clients and 3 MCP Servers from scratch, create a Streamlit-based UI for your client in Python, and deploy your MCP Server to Google Cloud using Server Sent Events (SSE). To top it off, we'll use a free Gemini API key from Google, so you can explore these powerful technologies without any cost for AI models.

You'll also implement Agent-to-Agent (A2A) Protocol to connect multiple agents, and build a Host Orchestrator Agent that integrates both MCP and A2A using Google’s Agent Development Kit (ADK).

What You Will Learn

  • Agent-to-Agent (A2A) Protocol: Connect 3 agents and build a host orchestrator using A2A + MCP.

  • Build 5 MCP Clients & 3 MCP Servers from Scratch – full working code included.

  • Design a UI in Streamlit for your MCP Client in Python.

  • Deploy your MCP Server on Google Cloud using Server Sent Events (SSE).

  • Use Google’s Gemini API (free key) to run AI-powered agents at no cost.

  • Work with Python, Gemini, LangGraph, SSE, Streamlit on macOS.

Why You Should Take This Class

  • MCP allows AI agents to interface with external tools and APIs.

  • A2A enables agent collaboration across technical and organizational boundaries.

  • These protocols form the communication backbone for modern autonomous agent systems.

  • I’ve been building and teaching A2A and MCP-based agent systems that generate code and perform complex tasks - and I’m excited to guide you through building them too.

Who This Class is For

  • Developers looking to build MCP clients, servers, and user interfaces.

  • AI agent developers, LangChain developers, and software engineers.

  • Entrepreneurs and product builders seeking a QuickStart on MCP + A2A.

Materials / Resources

  • This course is recorded on macOS - access to a macOS machine is highly recommended.

  • Windows instructions will be provided where relevant (ETA: end of July, as part of Github Repositories).

  • Linux instructions are currently not available and not under plan to be added later.

  • You’ll get access to a GitHub repo with all project code

  • MCP Server Code - https://github.com/theailanguage/terminal_server

  • MCP Client Code - https://github.com/theailanguage/mcp_client

  • A2A Code - https://github.com/theailanguage/a2a_samples
  • MCP and A2A are evolving protocols - breaking changes may occur. The instructor will then try to update the codes to reflect the changes as soon as possible

  • Basic Python knowledge is required.

  • Familiarity with LLMs (like Gemini or Claude) is required.

Conheça seu professor

Teacher Profile Image

Kartik Marwah

Teaching AI, Agents, MCP, A2A

Professor
Level: Advanced

Nota do curso

As expectativas foram atingidas?
    Superou!
  • 0%
  • Sim
  • 0%
  • Um pouco
  • 0%
  • Não
  • 0%

Por que fazer parte da Skillshare?

Faça cursos premiados Skillshare Original

Cada curso possui aulas curtas e projetos práticos

Sua assinatura apoia os professores da Skillshare

Aprenda em qualquer lugar

Faça cursos em qualquer lugar com o aplicativo da Skillshare. Assista no avião, no metrô ou em qualquer lugar que funcione melhor para você, por streaming ou download.