Ultimate Neural Network and Deep Learning Masterclasss

John Harper, Cambridge Programmer, AI engineer

Play Speed
  • 0.5x
  • 1x (Normal)
  • 1.25x
  • 1.5x
  • 2x
42 Lessons (4h 55m)
    • 1. Promo vid

      1:42
    • 2. About the class

      1:59
    • 3. How to maximise your learning

      4:03
    • 4. What is deep learning

      11:03
    • 5. Real world applications

      13:01
    • 6. Linear regression

      7:44
    • 7. Line of best fit

      10:20
    • 8. Linear regression with big data

      5:09
    • 9. Overfitting

      6:47
    • 10. Cost and loss

      9:34
    • 11. How do NNs learn

      5:08
    • 12. Neural networks recap

      20:27
    • 13. Training wheels off neural networks

      13:33
    • 14. Adding an activation function

      5:43
    • 15. First neural network

      15:28
    • 16. Multiple inputs

      5:59
    • 17. Hidden layers

      4:37
    • 18. Back propagation

      12:41
    • 19. Installing python

      5:25
    • 20. Jupyter notebook

      6:28
    • 21. Command line needs text for linux and mac commands

      4:41
    • 22. AWS

      3:10
    • 23. Hello world tensorflow

      6:02
    • 24. Feeding data and running sessions

      8:06
    • 25. Data structures

      3:31
    • 26. Loading data into tensorflow

      12:14
    • 27. Lloading data part 2

      7:20
    • 28. One hot coding

      2:42
    • 29. Neural network lets go

      8:17
    • 30. Give your network a brain

      14:57
    • 31. Running your model

      8:48
    • 32. Using other frameworkers

      3:25
    • 33. Loading handwritten digits

      7:39
    • 34. Creating the model

      4:45
    • 35. Running your model

      9:50
    • 36. Hyperparameters

      3:35
    • 37. Bias and variance

      4:50
    • 38. Strategies for reducing bias and variance

      6:34
    • 39. Activation functions

      1:55
    • 40. What we have covered

      3:11
    • 41. How to continue progressing

      1:55
    • 42. Thank you

      1:03

Project Description

By the end of the course you will be able to code, from scratch, a complete neural network - an image classifier that works on your own data! Want to create AI that can tell the difference between dogs and cats, humans and robots, cars and bikes? You'll be able to do it!

Student Projects