# Generalised Linear Models in R

[This article was first published on

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

Linear models are the bread and butter of statistics, but there is a lot more to it than taking a ruler and drawing a line through a couple of points.
Some time ago Rasmus Bååth published an insightful blog article about how such models could be described from a distribution centric point of view, instead of the classic error terms convention.
I think the distribution centric view makes generalised linear models (GLM) much easier to understand as well.
**R on mages' blog**, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.

To

**leave a comment**for the author, please follow the link and comment on their blog:**R on mages' blog**.R-bloggers.com offers

**daily e-mail updates**about R news and tutorials about learning R and many other topics. Click here if you're looking to post or find an R/data-science job.

Want to share your content on R-bloggers? click here if you have a blog, or here if you don't.