Applied Control Systems for Engineers 2: autonomous vehicle
Mark Misin, Aerospace & Robotics Engineer
105 Lessons (14h 11m)
View My Notes
-
-
1. Promo Video
1:54 -
2. Guide
2:50 -
3. PID VS Model Predictive Control (MPC) 1
2:42 -
4. Intro to MPC
1:09 -
5. Getting started with modelling a car 1
2:44 -
6. Getting started with modelling a car 2
2:48 -
7. Fundamentals of forces and moments 1
8:43 -
8. Fundamentals of forces and moments 2
4:43 -
9. Fundamentals of forces and moments 3
11:52 -
10. Setting stage for the car's lateral control 1
6:07 -
11. Setting stage for the car's lateral control 2
10:13 -
12. PID VS Model Predictive Control (MPC) 2
1:15 -
13. Setting stage for the car's lateral control 3
10:41 -
14. Setting stage for the car's lateral control 4
1:42 -
15. The general control structure for the vehicle's lateral control
2:34 -
16. Car model VS simplified bicycle model 1
6:09 -
17. Car model VS simplified bicycle model 2
1:53 -
18. Car model VS simplified bicycle model 3
3:34 -
19. Ackerman Steering
1:52 -
20. Longitudinal & lateral velocities of the bicycle model 1
5:48 -
21. Longitudinal & lateral velocities of the bicycle model 2
4:14 -
22. Equations of motion in the lateral direction
3:39 -
23. lateral & centripetal acceleration
7:04 -
24. centripetal acceleration intuition & mathematical derivation 1
7:15 -
25. Centripetal acceleration intuition & mathematical derivation 2
8:58 -
26. centripetal acceleration intuition & mathematical derivation 3
20:51 -
27. Modelling the front wheel of the vehicle 1
4:40 -
28. Rewriting lateral forces in terms of front wheel angles
4:20 -
29. Modelling the front wheel of the vehicle 2
2:37 -
30. Modelling the front wheel of the vehicle 3
10:33 -
31. Modelling the front wheel of the vehicle 4
10:46 -
32. From equations of motion to state-space equations 1
1:35 -
33. From equations of motion to state-space equations 2
8:08 -
34. From equations of motion to state-space equations 3
5:57 -
35. From equations of motion to state-space equations 4
3:38 -
36. The meaning of states 1
5:20 -
37. The meaning of states 2
4:58 -
38. Adding extra states to the system
9:15 -
39. Computing new states in the open loop system 1
12:16 -
40. Computing new states in the open loop system 2
9:58 -
41. Computing new states in the open loop system 3
5:45 -
42. Simplifying systems with small angle assumptions
8:54 -
43. Nonlinear VS Linear Time Invariant (LTI) models
11:47 -
44. Connecting LTI matrices with the vehicle's inputs
6:29 -
45. Getting LTI model using small angle approximation 1
4:36 -
46. Getting LTI model using small angle approximation 2
9:17 -
47. Getting LTI model using small angle approximation 3 + Recap
8:18 -
48. Model Predictive Control - Intro
8:16 -
49. Model Predictive Control - Thrust levels
6:56 -
50. Model Predictive Control - Cost function
13:48 -
51. Model Predictive Control - Cost function having several variables 1
14:07 -
52. Model Predictive Control - Cost function having several variables 2
4:28 -
53. Model Predictive Control - Cost function weights
6:56 -
54. Model Predictive Control - Horizon period
10:52 -
55. Model Predictive Control - measured VS predicted outputs (Kalman Filter)
9:28 -
56. Model Predictive Control - Quadratic VS other cost functions 1
6:36 -
57. Model Predictive Control - Quadratic VS other cost functions 2
6:09 -
58. Model Predictive Control - Quadratic VS other cost functions 3
8:27 -
59. Model Predictive Control - Quadratic VS other cost functions 4
8:20 -
60. Model Predictive Control - Math - 1
6:46 -
61. Model Predictive Control - Math - 2
11:37 -
62. Model Predictive Control - Math - 3
14:12 -
63. Model Predictive Control - Math - 4
19:50 -
64. Model Predictive Control - Math - 5
12:26 -
65. Model Predictive Control - Math - 6
8:25 -
66. Model Predictive Control - Math - 7
8:29 -
67. Model Predictive Control - Math - 8
10:26 -
68. MPC - extra intuition
10:04 -
69. Model Predictive Control - Math - 9
2:37 -
70. Model Predictive Control - Math - 10
9:09 -
71. Model Predictive Control - Math - 11
16:18 -
72. Model Predictive Control - Math - 12
5:20 -
73. Model Predictive Control - Math - 13
14:29 -
74. Model Predictive Control - Math - 14
3:58 -
75. Model Predictive Control - Math - 15
8:15 -
76. Model Predictive Control - Math - 16
7:38 -
77. Model Predictive Control - Math - 17
0:55 -
78. Model Predictive Control - Math - 18
6:40 -
79. Model Predictive Control - Math - 19
8:21 -
80. Model Predictive Control - Math - 20
6:51 -
81. Model Predictive Control - Math - 21
9:49 -
82. Derivation of the gradient of a quadratic vector-matrix form 1
9:31 -
83. Derivation of the gradient of a quadratic vector-matrix form 2
5:06 -
84. Derivation of the gradient of a quadratic vector-matrix form 3
6:23 -
85. Derivation of the gradient of a quadratic vector-matrix form 4
9:46 -
86. Derivation of the gradient of a quadratic vector-matrix form 5
11:44 -
87. Intro to (Linux & macOS Terminal) & (Windows Command Prompt)
12:50 -
88. Python Simulation Intro
1:02 -
89. Python installation instructions - Ubuntu
6:45 -
90. Python installation instructions - Windows 10
6:34 -
91. Python installation instructions - macOS
8:13 -
92. Intro to the simulator
8:26 -
93. Recap of the course
6:15 -
94. Code explanation 1 - general overview
9:49 -
95. Code explanation 2 - a function for storing the initial variables
14:01 -
96. Code explanation 3 - a function for generating trajectories
18:31 -
97. Code explanation 4 - a function for discrete state space matrices
6:01 -
98. Code explanation 5 - a function for generating the MPC cost function matrices
16:23 -
99. Code explanation 6 - a function for calculating new states
16:44 -
100. Code explanation 7 - the MAIN file 1
15:47 -
101. Code explanation 8 - the MAIN file 2
10:55 -
102. Code explanation 9 - the MAIN file 3
11:37 -
103. Code explanation 10 - Basic intro into Python animations & Plotting
19:00 -
104. Discussing the simulation results
10:57 -
105. PID VS Model Predictive Control (MPC) 3
9:22
-